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1. Numerical Solution of Partial Differential Equations

We numerically solve all partial differential equations using the Du Fort-Frankel (1953) explicit, leapfrog,

and unconditionally stable finite difference scheme. While traditional one-step finite difference schemes, such

as the Euler explicit approach, are prone to numerical instability, the Du Fort-Frankel scheme has a unique

approach to computing the time derivative that ensures the procedure is unconditionally stable numerically.

Additionally, this approach is more computationally effective than one-step finite difference schemes. For a

given finite difference grid, let h be the maximum number of grid steps in the state space, excluding time.

Leapfrog schemes, such as the Du Fort-Frankel, generally require O(h) steps in time for stability, while Euler

explicit schemes require O(h2).

Before implementing the numerical procedure, we transform the state space of our partial differential

equations to improve computational efficiency and accuracy. This focuses the numerical procedure on outside

wealth and stock price values that are most likely to be encountered by the executive. The transformation is

specified to ensure that our starting outside wealth and stock price values are located on the finite difference

grid, which eliminates the need to interpolate our final results. We then numerically solve the transformed

partial differential equations simultaneously using a Du Fort-Frankel scheme. Details about the solution

method follow.

1.1. Transforming the PDEs and state space

Our specific transformation is most easily understood by first analyzing the state space, Ω, of the

untransformed problem. Ω consists of all possible values of executive outside wealth, W , stock price, S, and

time, t.

Ω = {(W, S, t) : (W, S, t) ∈ R+ × R+ × [0, T ]} (1)

Numerical analysis requires that we restrict this infinite state space to a finite one, Θ ⊆ Ω

Θ = {(W, S, t) : (W, S, t) ∈ [Wmin, Wmax]× [Smin, Smax]× [0, T ]} (2)

Wmin, Wmax, Smin, and Smax are selected to represent a broad range of possible agent outside wealth and

stock price states given the initial conditions and market environment.
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We then transform state variables x ∈ (S, W ) using

f(x) = (x− xmin)/(Ax + Dxx) (3)

where Ax, Dx, and xmin and free constants. We substitute this expression and appropriate derivatives into

the original PDEs to derive new PDEs that operate over the transformed space.

The transformation is simply a restatement of the PDEs; it does not affect their economic interpretation.

However, by using this transformation, we are able to more efficiently use computation power. The constants

of transformation Ax, Dx, and xmin are selected so that, for a minimal value of xmin, f(xmin) = 0 and, for a

maximum state value xmax, f(xmax) = 1. We also solve the equations so that, for an initial state value x0,

f(x0) is exactly on the grid. Finally, we pick parameter values to center the transformed grid around an

area of interest. Qualitatively, if f(x0) < 0.5, the grid is configured so that we have higher accuracy in states

when xt > x0.

1.2. Implementing the Du Fort-Frankel scheme

As with all leapfrog schemes, the Du Fort-Frankel approach uses Partial Differential Equation (PDE)

values at time steps tn+1 and tn+2 to compute values at tn. Our model only has information at the terminal

value. Therefore, in order to seed the leapfrog method, we need to know the value of the PDE at a second

point in time. To compute this second time step value, we use an Euler explicit method, which only requires

information at tn+1 to compute tn. However, as the Euler explicit converges at a slower rate than the Du

Fort-Frankel, we initially use O(h2) time steps during the Euler explicit phase before switching over to the

Du Fort-Frankel scheme, with order O(h) steps.

In other words, assume that time period T is equally divided into N steps for the Du Fort-Frankel scheme.

We set the terminal conditions at step tN . We then add N additional steps between time step tN−1 and tN

and use an Euler Explicit method to solve for PDE values at tN−1. Finally, we apply the Du Fort-Frankel

method to solve the PDE using the Euler Explicit solution at tN−1 and the terminal condition at tN .
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1.3. Solving the executive’s investment problem

We solve the executive’s problem, Eq. (9), as follows. At option expiration, we compute the value of

the executive’s utility function at the terminal payoff. We then step backwards incrementally in time. For

each time step tn, we first set appropriate boundary conditions as described below. With these boundary

conditions in place, we assume all points lie within the continuation region, D. The optimal investment

policy is determined, which is used to compute the numerical time derivative of the PDE.1 We use this

time derivative, along with information about the PDE values at previously computed time steps, to find

the executive’s continuation utility at tn. We then determine the utility assuming option exercise, Eq. (11).

Instead of solving a partial differential equation to compute the indirect utility function we use the well-known

closed-form solution to the problem for a constant relative risk averse investor.2 Finally, we determine the

optimal exercise policy by comparing the continuation utility to that realized from exercising the option.3

The maximum of the two utilities is used as the executive’s realized utility under optimal investment and

exercise.

Boundary conditions are required to implement the above procedure. Prior to expiration, we use the

intuition provided by Carpenter, Stanton, and Wallace (2010). When either the stock or outside wealth values

hits an upper boundary, Carpenter, Stanton, and Wallace show that the executive follows a nearly optimal

policy, yielding a present value of the option approximately equal to the risk-neutral American option market

price. Therefore, our boundary condition for the executive at both the maximum stock price and maximum

outside wealth treats the option simply as part of the executive’s wealth. The utility is equal to that which

would be achieved under Eq. (11) assuming the executive has total wealth equal to her outside wealth and

American option value, no outside option, and invests optimally. For the lower boundaries of stock price and

outside wealth, we also use the American option value. This choice, while incorrect theoretically, represents

an upper bound on the value and does not qualitatively impact the results. A lower bound value with zero

for the option value provides similar results.
1This optimal policy along with the value of the PDE at tn+1 and tn+2 provide the Du Fort-Frankel estimate of the time
derivative. In the Euler explicit phase, only the PDE value at time tn is used.

2Using a numerical method to solve the agent’s optimal investment problem without options provides similar results but slows
the computation.

3With constant relative risk aversion, the indirect utility function after the options are exercised has the closed-form solution to
the Merton (1969) portfolio choice problem. V (W, τ) = 1

1−γW
1−γe(T−τ)ε, where ε is a constant.
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The appropriate American option value represents optimal exercise under a risk-neutral measure. This

value must also reflect the executive’s exercise restriction, i.e. the option can not be exercised for t < tv. We

use a hybrid binomial tree-finite difference approach to value the American option. First, we compute the

option value using a binomial tree for Smax and Smin at each point in time.4 These provide the boundary

conditions for the standard option pricing PDE. We then evaluate this PDE using the Du Fort-Frankel

method. During the period where the option can be exercised early, we set the PDE value at each (S, t) equal

to the maximum of the continuation and the immediate exercise values.5

The executive’s portfolio choice problem is non-trivial when the agent is optimistic. Without the option,

the executive wishes to hold a positive amount of the stock. However, as noted by Carpenter, Stanton,

and Wallace, the portfolio choice opportunity set must be bounded to ensure that the numerical scheme

converges. For low outside wealth, the convexity of the option makes the risk-averse executive’s indirect

utility function convex. As the numerical solution uses a discrete approximation to a continuous surface, this

convexity can create numerical instabilities that propagate through the numerical grid if the executive is

allowed to choose unbounded portfolio allocations. We assume that the executive cannot have a position

greater than an exogenously specified multiple, M , of executive outside wealth in both the stock and the

market. Per the short-sale constraints, we enforce ωS
t ≥ 0. Together, these constraints require 0 ≤ ωS

t ≤M

and −M ≤ ωM
t ≤M .6 We experimented with a range of values to ensure that the constraint only affects the

stability of the solution and does not impact the results presented in the paper. Similarly, different shaped

constraint sets do not change the results. For example, a gross leverage constraint on the total portfolio,

|ωS
t |+ |ωM

t | ≤M , generates results nearly identical to those presented here. Finally, we always select leverage

constrains such that the portfolio weights for the Merton solution are in the interior of our solution space.

Given the potential convexity of the indirect utility function, care must be taken when finding the optimal

portfolio choice. We use the constraint set described above and consider internal, edge, and corner solutions.

Specifically, we compute objective function values at nine potential solutions in (ωS , ωM ) for each point
4Binomial tree approximations of derivative prices converge to true value as the number of steps increases. However, an
“odd-even” swing occurs, in which the direction of the approximation error depends on whether the tree has an even or odd
number of steps. Using a value that is averaged over an even and odd step binomial tree is known to improve accuracy. To that
end, we average the values from a 200-step and 201-step binomial tree for each stock price.

5These computations can be done using a binomial tree approach. However, that method is quite slow. For a moderately sized
grid, 100-point grid in the stock space and a 10,000-point grid in time, a pure binomial tree approach would require computing
1,000,000 binomial trees. This hybrid provides a high degree of accuracy with only a modest amount of computation time.

6These constraints can be interpreted as leverage constraints imposed on the executive by a broker.

4



(W, S, t) in the continuation set. For the first potential solution, we assume that the objective function is

globally concave and compute the unconstrained first-order conditions. Four possible edge solutions are

found by examining the boundary of the constrained portfolio choice set. We alternatively assume that the

solution has ωS
t = 0, ωS

t = M, ωM
t = −M, and ωM

t = M , where M is the exogenously specified constraint as

described above. We substitute each of these assumptions individually into the PDE and derive appropriate

first-order conditions for the other variable. We reject any potential solution arising from first-order conditions

that lie outside the constrained opportunity set. Finally, we consider the four potential corner solutions

(ωS , ωM ) ∈ {(0,−M), (M,−M), (0, M), (M, M)}. We select the optimal portfolio choice from among the

candidates as the argument that maximizes the objective function.

1.4. Solving partial differential equations under the physical and risk-neutral measures

We solve the remaining PDEs to find the expected remaining time to expiration at exercise, the expected

value ratio on exercise, and the expected proportion of stocks retained on exercise under their respective

probability measures. In summary, our algorithm sets the terminal function value for each PDE. Then, it

works backwards, implementing the Du Fort-Frankel scheme. For each time step, the solver sets boundary

conditions and computes function values assuming all points lie within the continuation region. Then, it finds

the set of (W, S, t) where the executive exercised the option early and changes the PDE value to reflect the

value realized with early exercise as described below.7

For the expected proportion of stocks retained on exercise, our boundary conditions are found by dividing

the optimal number of shares the executive retains on option exercise by the number of options granted. The

expected time-to-expiration PDE boundary value is set to the time when the executive exercises the option.

Finally, the value ratio PDE has a boundary condition at exercise equal to the ratio of the intrinsic value of

the option divided by the American option value. The boundary condition for these three PDEs is 0 at the

low stock price boundary, because it is highly unlikely that the option will ever be exercised.
7In practice, each PDE is solved simultaneously with the executive’s investment problem using the Du Fort-Frankel method.
Solving the equations simultaneously is not strictly necessary. However, this approach maximizes computational efficiency,
requiring the optimal exercise policy only at the current time step and eliminating the need to store the full optimal conditional
exercise policy decisions for the executive.
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2. Identification of CEO Option Exercise Activity

The core sample used in our empirical tests derives from S&P Capital IQ’s Compustat North America

(Compustat) and Executive Compensation (ExecuComp) databases. CEOs in ExecuComp are marked with

unique execid identifiers. For each CEO, we find option exercise and stock trading activity as collected by

Thomson Reuters Insider Filings (Thomson). Thomson uses personid identifiers, which may not be unique

for a person. Thomson identifiers are based on legal entity, so each entity through which an executive trades

receives a unique personid. Option exercises and stock trades are reported by insiders on SEC Forms 3, 4, and

5. These forms require insiders to provide their name, address, and relationship to the company. However, as

people may move, use abbreviated names, or change roles within a company, multiple IDs may be created

for a single person in Thomson. Thomson does a very good job consolidating trades under different names.

However, due to the sheer number of insider trades reported each year to the SEC, some executives may have

trades assigned to several personids.

We undertook an extensive process of linking the ExecuComp and Thomson datasets to ensure we captured

all trades by an insider and avoided developing a fragmented view of trading activity. To accomplish this, we

use a computer-assisted manual matching process (described below) that helps us find all Thomson personid

identifiers for each unique ExecuComp execid. Approximately 10% of the CEOs in ExecuComp have more

than one personid identifier in Thomson.

2.1. Matching Process

We match Execucomp’s execid identifier to Thomson’s personid identifier using a computer-assisted

manual matching process. For each CEO in ExecuComp, we first find a sample of all Thomson insiders

who share a corporate affiliation with the ExecuComp CEO as described below. Any Thomson insider who

has the exact name as in ExecuComp, including title and suffix, is automatically approved as a match. As

people may have multiple personids in Thomson, we then evaluate all the remaining Thomson executives.

These Thomson insiders are first sorted using the average text similarity score from five different fuzzy text

algorithms comparing the Thomson executive name to that from ExecuComp. We then manually review

these sorted insiders to find additional execid-personid matches. The fuzzy text algorithms, described below,
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are designed to maximize accuracy and efficiency of manual matching. The algorithms find matches with

commonly encountered differences in name listings across databases, such as name abbreviations, nicknames,

title and suffixes, misspellings, and word translocations. Finally, when we are unable to find a match for a

Compustat CEO, we hand match on both person and company names using the full sample of Thomson

executives without filtering for company affiliations.

2.2. Identifying the Sample of Thomson Insiders

Our core name-matching process requires a sample of Thomson insiders matching the corporate affiliations

of an ExecuComp CEO. Both datasets contain CUSIP identifiers. However, as a firm’s CUSIP may change,

the CUSIP listed with an ExecuComp CEO may not be the same as that CEO’s corresponding entry in

Thomson. Therefore, we begin by building a comprehensive list of CUSIP identifiers for each ExecuComp

CEO. The list contains all CUSIP identifiers in ExecuComp associated with a CEO’s execid identifier. We

supplement these observations by collecting all Compustat firm identifiers, gvkeys, associated with the execid

and adding the linked CUSIPs from the CRSP/Compustat Merged Database. The sample of potential

Thomson insiders consists of those with a CUSIP contained in the set of CUSIPs for the ExecuComp CEO

execid.

2.3. Text Distance Measures

We use five different text distance measures to help us match names across the datasets. Each measure

is normalized to rate name similarities on a scale from 0 to 1, with lower scores indicating more similar

names. A brief description of each distance measure and its role in addressing common problems in matching

names across databases are provided below. The algorithms are presented in decreasing order of sensitivity.

Any pair of names that are determined to be close under a measure do at least as well, relatively, on any

higher-numbered distance measure. In processing the names, we remove all punctuation and ensure uniform

use of whitespace.

The first distance measure is a Damerau-Levenshtein (DL) distance algorithm, which helps identify names

with spelling differences. The algorithm counts the number of operations required to transform one text

string into another. Allowable operations include single letter insertion, deletions, and substitutions, and the
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transposition of two adjacent letters. We normalize the distance by dividing the number of operations by five

and capping the quotient at one. The DL approach requires the names being compared to be structured

similarly. That is, the words should appear in the same order, middle names should be present or absent in

both versions of the name, and, when appropriate, the names being compared should have the same use of

title and suffixes.

The second distance measure is a DL algorithm that allows for words to appear in different order in the

two strings. This measure address problems when names may appear either last name first or first name first.

To implement this algorithm, we create a set of all possible permutations of word order for the ExecuComp

name. Then, we compute the normalized DL distance of the Thomson name with each permutation. The

distance is the minimum score, allowing a maximum of five operations and normalizing the score to lie

between 0 and 1 as above. As we find all permutations of the ExecuComp name and take the minimum DL

distance with the Thomson name, there is no need to find word-order permutation of the Thomson name.

This algorithm corrects for word order, but still suffers from various issues, such as when one database uses a

middle name, title or suffix and the other database does not. Such issues are addressed by the remaining

three algorithms.

The third distance measure is a modified cosine similarity score. This algorithm rates pairs of text strings

based on shared words, weighting each word by the information it provides to the matching process. For

each CEO, we create a corpus consisting of the ExecuComp name and the list of Thomson insider names

from associated firms. Words in the corpus are assigned scores using a Term Frequency-Inverse Document

Frequency (TF-IDF) weighting system, which gives extra weight to words that appear infrequently in the

corpus. Each name is then considered in a vector space using these TF-IDF weights. To mimic the ranking

system using in distance measures 1 and 2, where lower scores indicating better matches, we use a modified

cosine similarity score as our measure of similarity. It is defined as one minus the cosine between any two

name vectors. This algorithm helps identify executives who may use nicknames or common names sufficiently

different from their legal names so that DL algorithms do not identify the match across the databases. The

algorithm allows words to appear in any order in a name. Additionally, it will pick up matches that differ

structurally, such as when one database uses a middle name and the other does not.
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The fourth distance measure uses the modified cosine similarity score of algorithm 3, but allows for

misspellings. For each word in an ExecuComp name, we build a vector of the word itself and all possible

words found in the text corpus that differ by at most one DL operation. We then take a tensor product

of these potential name vectors to create a set of alternate spellings for each ExecuComp name. We then

compare each version of the name against the original Thomson name. The score is defined as the minimum

modified cosine similarity score across all combinations of possible alternate spellings. By construction, this

approach will always include the original spelling of the ExecuComp name and, therefore, will never perform

worse than the cosine similarity approach used in the third distance measure. Unlike the second distance

measure, this approach is not equivalent to finding all spelling permutations of both the ExecuComp name

and the Thomson name due to the way the TF-IDF weighting scheme normalizes word similarity. However,

we find no difference in the algorithm performance as implemented against a more general approach, but see

an exponential benefit in computational time.

The final distance measure is designed to identify similar-sounding names. This helps identify executives

across the Thomson and ExecuComp databases when there are multiple typographical errors. Each name is

initially transformed using the SoundEx algorithm, which transforms each word into a code representing

its phonetic structure. These transformed names are then fed through the fourth algorithm. As such, this

approach allows us to compare names with slight variation in pronunciation, giving extra weight to phonetic

structures that appear infrequently. As with the third and fourth distance measures, this approach allows us

to compare names with words appearing in different order and with structural differences.
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